Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Epidemics ; : 100769, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38644157

RESUMO

As we emerge from what may be the largest global public health crises of our lives, our community of epidemic modellers is naturally reflecting. What role can modelling play in supporting decision making during epidemics? How could we more effectively interact with policy makers? How should we design future disease surveillance systems? All crucial questions. But who is going to be addressing them in 10 years' time? With high burnout and poor attrition rates in academia, both magnified in our field by our unprecedented efforts during the pandemic, and with low wages coinciding with inflation at its highest for decades, how do we retain talent? This is a multifaceted challenge, that I argue is underpinned by privilege. In this perspective, I introduce the notion of privilege and highlight how various aspects of privilege (namely gender, ethnicity, sexual orientation, language and caring responsibilities) may affect the ability of individuals to access to and progress within academic modelling careers. I propose actions that members of the epidemic modelling research community may take to mitigate these issues and ensure we have a more diverse and equitable workforce going forward.

2.
J Travel Med ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630887

RESUMO

BACKGROUND: The international flight network creates multiple routes by which pathogens can quickly spread across the globe. In the early stages of infectious disease outbreaks, analyses using flight passenger data to identify countries at risk of importing the pathogen are common and can help inform disease control efforts. A challenge faced in this modelling is that the latest aviation statistics (referred to as contemporary data) are typically not immediately available. Therefore, flight patterns from a previous year are often used (referred to as historical data). We explored the suitability of historical data for predicting the spatial spread of emerging epidemics. METHODS: We analysed monthly flight passenger data from the International Air Transport Association to assess how baseline air travel patterns were affected in outbreaks of MERS, Zika, and SARS-CoV-2 over the past decade. We then used a stochastic discrete time SEIR metapopulation model to simulate global spread of different pathogens, comparing how epidemic dynamics differed in simulations based on historical and contemporary data. RESULTS: We observed local, short-term disruptions to air travel from South Korea and Brazil for the MERS and Zika outbreaks we studied, whereas global and longer-term flight disruption occurred during the SARS-CoV-2 pandemic.For outbreak events that were accompanied by local, small, and short-term changes in air travel, epidemic models using historical flight data gave similar projections of timing and locations of disease spread as when using contemporary flight data. However, historical data were less reliable to model the spread of an atypical outbreak such as SARS-CoV-2 in which there were durable and extensive levels of global travel disruption. CONCLUSIONS: The use of historical flight data as a proxy in epidemic models is an acceptable practice except in rare, large epidemics that lead to substantial disruptions to international travel.

3.
Sex Transm Dis ; 51(3): 206-213, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38412467

RESUMO

BACKGROUND: In settings without etiologic testing for sexually transmitted infections (STIs), programs rely on STI symptom data to inform priorities. To evaluate whether self-reported STI symptoms in household surveys consistently represent the STI burden, we compared symptomatic infection rates between survey self-reporting and health facility case reporting in Malawi. METHODS: We analyzed self-reported symptoms and treatment seeking in the past year among sexually active adults from 4 Malawi Demographic and Health Surveys between 2000 and 2015. Bayesian mixed-effects models were used to estimate temporal trends, spatial variation, and sociodemographic determinants. Survey reporting was compared with health facility syndromic diagnoses between 2014 and 2021. RESULTS: In surveys, 11.0% (95% confidence interval, 10.7%-11.4%) of adults reported STI or STI-related symptoms in the last year, of whom 54.2% (52.8%-55.7%) sought treatment. In facilities, the mean annual symptomatic case diagnosis rate was 3.3%. Survey-reported treatment in the last year was 3.8% (95% credible interval, 2.3%-6.1%) for genital ulcer, 3.8% (2.0%-6.7%) for vaginal discharge, and 2.6% (1.2%-4.7%) for urethral discharge. Mean annual diagnosis rates at facilities were 0.5% for genital ulcer, 2.2% for vaginal discharge, and 2.0% for urethral discharge. Both data sources indicated a higher burden of symptoms among women, individuals older than 25 years, and those in Southern Malawi. CONCLUSIONS: Survey and facility case reports indicated similar spatial and demographic patterns of STI symptom burden and care seeking, but implied large differences in the magnitude and relative burden of symptoms, particularly genital ulcer, which could affect program priorities. Targeted etiologic surveillance would improve interpretation of these data to enable more comprehensive STI surveillance.


Assuntos
Infecções por HIV , Infecções Sexualmente Transmissíveis , Descarga Vaginal , Adulto , Feminino , Humanos , Úlcera , Teorema de Bayes , Malaui/epidemiologia , Infecções Sexualmente Transmissíveis/diagnóstico , Infecções Sexualmente Transmissíveis/epidemiologia , Infecções por HIV/epidemiologia
6.
Lancet Infect Dis ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38040006

RESUMO

The 2023 Marburg virus disease outbreaks in Equatorial Guinea and Tanzania highlighted the importance of better understanding this lethal pathogen. We did a systematic review (PROSPERO CRD42023393345) of peer-reviewed articles reporting historical outbreaks, modelling studies, and epidemiological parameters focused on Marburg virus disease. We searched PubMed and Web of Science from database inception to March 31, 2023. Two reviewers evaluated all titles and abstracts with consensus-based decision making. To ensure agreement, 13 (31%) of 42 studies were double-extracted and a custom-designed quality assessment questionnaire was used for risk of bias assessment. We present detailed information on 478 reported cases and 385 deaths from Marburg virus disease. Analysis of historical outbreaks and seroprevalence estimates suggests the possibility of undetected Marburg virus disease outbreaks, asymptomatic transmission, or cross-reactivity with other pathogens, or a combination of these. Only one study presented a mathematical model of Marburg virus transmission. We estimate an unadjusted, pooled total random effect case fatality ratio of 61·9% (95% CI 38·8-80·6; I2=93%). We identify epidemiological parameters relating to transmission and natural history, for which there are few estimates. This systematic review and the accompanying database provide a comprehensive overview of Marburg virus disease epidemiology and identify key knowledge gaps, contributing crucial information for mathematical models to support future Marburg virus disease epidemic responses.

7.
PLoS One ; 18(10): e0286199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37851661

RESUMO

Since 8th March 2020 up to the time of writing, we have been producing near real-time weekly estimates of SARS-CoV-2 transmissibility and forecasts of deaths due to COVID-19 for all countries with evidence of sustained transmission, shared online. We also developed a novel heuristic to combine weekly estimates of transmissibility to produce forecasts over a 4-week horizon. Here we present a retrospective evaluation of the forecasts produced between 8th March to 29th November 2020 for 81 countries. We evaluated the robustness of the forecasts produced in real-time using relative error, coverage probability, and comparisons with null models. During the 39-week period covered by this study, both the short- and medium-term forecasts captured well the epidemic trajectory across different waves of COVID-19 infections with small relative errors over the forecast horizon. The model was well calibrated with 56.3% and 45.6% of the observations lying in the 50% Credible Interval in 1-week and 4-week ahead forecasts respectively. The retrospective evaluation of our models shows that simple transmission models calibrated using routine disease surveillance data can reliably capture the epidemic trajectory in multiple countries. The medium-term forecasts can be used in conjunction with the short-term forecasts of COVID-19 mortality as a useful planning tool as countries continue to relax public health measures.


Assuntos
COVID-19 , Epidemias , Humanos , COVID-19/epidemiologia , Estudos Retrospectivos , SARS-CoV-2 , Tempo , Previsões
8.
PLoS Comput Biol ; 19(8): e1011439, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37639484

RESUMO

The time-varying reproduction number (Rt) is an important measure of epidemic transmissibility that directly informs policy decisions and the optimisation of control measures. EpiEstim is a widely used opensource software tool that uses case incidence and the serial interval (SI, time between symptoms in a case and their infector) to estimate Rt in real-time. The incidence and the SI distribution must be provided at the same temporal resolution, which can limit the applicability of EpiEstim and other similar methods, e.g. for contexts where the time window of incidence reporting is longer than the mean SI. In the EpiEstim R package, we implement an expectation-maximisation algorithm to reconstruct daily incidence from temporally aggregated data, from which Rt can then be estimated. We assess the validity of our method using an extensive simulation study and apply it to COVID-19 and influenza data. For all datasets, the influence of intra-weekly variability in reported data was mitigated by using aggregated weekly data. Rt estimated on weekly sliding windows using incidence reconstructed from weekly data was strongly correlated with estimates from the original daily data. The simulation study revealed that Rt was well estimated in all scenarios and regardless of the temporal aggregation of the data. In the presence of weekend effects, Rt estimates from reconstructed data were more successful at recovering the true value of Rt than those obtained from reported daily data. These results show that this novel method allows Rt to be successfully recovered from aggregated data using a simple approach with very few data requirements. Additionally, by removing administrative noise when daily incidence data are reconstructed, the accuracy of Rt estimates can be improved.


Assuntos
COVID-19 , Humanos , Incidência , Software , Simulação por Computador , Reprodução
9.
PLoS Comput Biol ; 19(8): e1011393, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37643178

RESUMO

Forecast evaluation is essential for the development of predictive epidemic models and can inform their use for public health decision-making. Common scores to evaluate epidemiological forecasts are the Continuous Ranked Probability Score (CRPS) and the Weighted Interval Score (WIS), which can be seen as measures of the absolute distance between the forecast distribution and the observation. However, applying these scores directly to predicted and observed incidence counts may not be the most appropriate due to the exponential nature of epidemic processes and the varying magnitudes of observed values across space and time. In this paper, we argue that transforming counts before applying scores such as the CRPS or WIS can effectively mitigate these difficulties and yield epidemiologically meaningful and easily interpretable results. Using the CRPS on log-transformed values as an example, we list three attractive properties: Firstly, it can be interpreted as a probabilistic version of a relative error. Secondly, it reflects how well models predicted the time-varying epidemic growth rate. And lastly, using arguments on variance-stabilizing transformations, it can be shown that under the assumption of a quadratic mean-variance relationship, the logarithmic transformation leads to expected CRPS values which are independent of the order of magnitude of the predicted quantity. Applying a transformation of log(x + 1) to data and forecasts from the European COVID-19 Forecast Hub, we find that it changes model rankings regardless of stratification by forecast date, location or target types. Situations in which models missed the beginning of upward swings are more strongly emphasised while failing to predict a downturn following a peak is less severely penalised when scoring transformed forecasts as opposed to untransformed ones. We conclude that appropriate transformations, of which the natural logarithm is only one particularly attractive option, should be considered when assessing the performance of different models in the context of infectious disease incidence.


Assuntos
COVID-19 , Epidemias , Humanos , COVID-19/epidemiologia , Saúde Pública , Probabilidade , Registros
10.
Epidemics ; 44: 100713, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37579586

RESUMO

BACKGROUND: The serial interval is a key epidemiological measure that quantifies the time between the onset of symptoms in an infector-infectee pair. It indicates how quickly new generations of cases appear, thus informing on the speed of an epidemic. Estimating the serial interval requires to identify pairs of infectors and infectees. Yet, most studies fail to assess the direction of transmission between cases and assume that the order of infections - and thus transmissions - strictly follows the order of symptom onsets, thereby imposing serial intervals to be positive. Because of the long and highly variable incubation period of SARS-CoV-2, this may not always be true (i.e an infectee may show symptoms before their infector) and negative serial intervals may occur. This study aims to estimate the serial interval of different SARS-CoV-2 variants whilst accounting for negative serial intervals. METHODS: This analysis included 5 842 symptomatic individuals with confirmed SARS-CoV-2 infection amongst 2 579 households from September 2020 to August 2022 across England & Wales. We used a Bayesian framework to infer who infected whom by exploring all transmission trees compatible with the observed dates of symptoms, based on a wide range of incubation period and generation time distributions compatible with estimates reported in the literature. Serial intervals were derived from the reconstructed transmission pairs, stratified by variants. RESULTS: We estimated that 22% (95% credible interval (CrI) 8-32%) of serial interval values are negative across all VOC. The mean serial interval was shortest for Omicron BA5 (2.02 days, 1.26-2.84) and longest for Alpha (3.37 days, 2.52-4.04). CONCLUSIONS: This study highlights the large proportion of negative serial intervals across SARS-CoV-2 variants. Because the serial interval is widely used to estimate transmissibility and forecast cases, these results may have critical implications for epidemic control.


Assuntos
COVID-19 , Epidemias , Humanos , SARS-CoV-2 , COVID-19/epidemiologia , Teorema de Bayes
11.
Epidemics ; 44: 100692, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37399634

RESUMO

The evolution of SARS-CoV-2 has demonstrated that emerging variants can set back the global COVID-19 response. The ability to rapidly assess the threat of new variants is critical for timely optimisation of control strategies. We present a novel method to estimate the effective transmission advantage of a new variant compared to a reference variant combining information across multiple locations and over time. Through an extensive simulation study designed to mimic real-time epidemic contexts, we show that our method performs well across a range of scenarios and provide guidance on its optimal use and interpretation of results. We also provide an open-source software implementation of our method. The computational speed of our tool enables users to rapidly explore spatial and temporal variations in the estimated transmission advantage. We estimate that the SARS-CoV-2 Alpha variant is 1.46 (95% Credible Interval 1.44-1.47) and 1.29 (95% CrI 1.29-1.30) times more transmissible than the wild type, using data from England and France respectively. We further estimate that Delta is 1.77 (95% CrI 1.69-1.85) times more transmissible than Alpha (England data). Our approach can be used as an important first step towards quantifying the threat of emerging or co-circulating variants of infectious pathogens in real-time.


Assuntos
COVID-19 , Epidemias , Humanos , SARS-CoV-2 , COVID-19/epidemiologia , Simulação por Computador
12.
Nat Commun ; 14(1): 4279, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460537

RESUMO

As the SARS-CoV-2 pandemic progressed, distinct variants emerged and dominated in England. These variants, Wildtype, Alpha, Delta, and Omicron were characterized by variations in transmissibility and severity. We used a robust mathematical model and Bayesian inference framework to analyse epidemiological surveillance data from England. We quantified the impact of non-pharmaceutical interventions (NPIs), therapeutics, and vaccination on virus transmission and severity. Each successive variant had a higher intrinsic transmissibility. Omicron (BA.1) had the highest basic reproduction number at 8.3 (95% credible interval (CrI) 7.7-8.8). Varying levels of NPIs were crucial in controlling virus transmission until population immunity accumulated. Immune escape properties of Omicron decreased effective levels of immunity in the population by a third. Furthermore, in contrast to previous studies, we found Alpha had the highest basic infection fatality ratio (2.9%, 95% CrI 2.7-3.2), followed by Delta (2.2%, 95% CrI 2.0-2.4), Wildtype (1.2%, 95% CrI 1.1-1.2), and Omicron (0.7%, 95% CrI 0.6-0.8). Our findings highlight the importance of continued surveillance. Long-term strategies for monitoring and maintaining effective immunity against SARS-CoV-2 are critical to inform the role of NPIs to effectively manage future variants with potentially higher intrinsic transmissibility and severe outcomes.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Teorema de Bayes , COVID-19/epidemiologia , Inglaterra/epidemiologia
13.
Lancet Reg Health Am ; 23: 100533, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37497395

RESUMO

Background: Of the eight large (>50 cases) US postelimination outbreaks, the first and last occurred in Ohio. Ohio's vaccination registry is incomplete. Community-level immunity gaps threaten more than two decades of measles elimination in the US. We developed a statistical model, VaxEstim, to rapidly estimate the early-phase vaccination coverage and immunity gap in the exposed population during the 2022 Central Ohio outbreak. Methods: We used reconstructed daily incidence (from publicly available data) and assumptions about the distribution of the serial interval, or the time between symptom onset in successive measles cases, to estimate the effective reproduction number (i.e., the average number of secondary infections caused by an infected individual in a partially immune population). We estimated early-phase measles vaccination coverage by comparing the effective reproduction number to the basic reproduction number (i.e., the average number of secondary infections caused by an infected individual in a fully susceptible population) while accounting for vaccine effectiveness. Finally, we estimated the early-phase immunity gap as the difference between the estimated critical vaccination threshold and vaccination coverage. Findings: VaxEstim estimated the early-phase vaccination coverage as 53% (95% credible interval, 21%-77%), the critical vaccination threshold as 93%, and the immunity gap as 42% (95% credible interval, 18%-74%). Interpretation: This study estimates a significant immunity gap in the exposed population during the early phase of the 2022 Central Ohio measles outbreak, suggesting a robust public health response is needed to identify the susceptible community and develop community-specific strategies to close the immunity gap. Funding: This work was supported in part by the National Institute of General Medical Sciences, National Institutes of Health; the UK Medical Research Council (MRC); the Foreign, Commonwealth and Development Office; the National Institute for Health Research (NIHR) Health Protection Research Unit in Modelling Methodology; Imperial College London, and the London School of Hygiene & Tropical Medicine, Community Jameel; the EDCTP2 programme, supported by the EU; and the Sergei Brin Foundation.

14.
Lancet Infect Dis ; 23(9): e383-e388, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37150186

RESUMO

Novel data and analyses have had an important role in informing the public health response to the COVID-19 pandemic. Existing surveillance systems were scaled up, and in some instances new systems were developed to meet the challenges posed by the magnitude of the pandemic. We describe the routine and novel data that were used to address urgent public health questions during the pandemic, underscore the challenges in sustainability and equity in data generation, and highlight key lessons learnt for designing scalable data collection systems to support decision making during a public health crisis. As countries emerge from the acute phase of the pandemic, COVID-19 surveillance systems are being scaled down. However, SARS-CoV-2 resurgence remains a threat to global health security; therefore, a minimal cost-effective system needs to remain active that can be rapidly scaled up if necessary. We propose that a retrospective evaluation to identify the cost-benefit profile of the various data streams collected during the pandemic should be on the scientific research agenda.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias/prevenção & controle , Estudos Retrospectivos , Coleta de Dados
16.
Lancet Public Health ; 8(3): e174-e183, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36774945

RESUMO

BACKGROUND: The UK was the first country to start national COVID-19 vaccination programmes, initially administering doses 3 weeks apart. However, early evidence of high vaccine effectiveness after the first dose and the emergence of the SARS-CoV-2 alpha variant prompted the UK to extend the interval between doses to 12 weeks. In this study, we aimed to quantify the effect of delaying the second vaccine dose in England. METHODS: We used a previously described model of SARS-CoV-2 transmission, calibrated to COVID-19 surveillance data from England, including hospital admissions, hospital occupancy, seroprevalence data, and population-level PCR testing data, using a Bayesian evidence-synthesis framework. We modelled and compared the epidemic trajectory in the counterfactual scenario in which vaccine doses were administered 3 weeks apart against the real reported vaccine roll-out schedule of 12 weeks. We estimated and compared the resulting numbers of daily infections, hospital admissions, and deaths. In sensitivity analyses, we investigated scenarios spanning a range of vaccine effectiveness and waning assumptions. FINDINGS: In the period from Dec 8, 2020, to Sept 13, 2021, the number of individuals who received a first vaccine dose was higher under the 12-week strategy than the 3-week strategy. For this period, we estimated that delaying the interval between the first and second COVID-19 vaccine doses from 3 to 12 weeks averted a median (calculated as the median of the posterior sample) of 58 000 COVID-19 hospital admissions (291 000 cumulative hospitalisations [95% credible interval 275 000-319 000] under the 3-week strategy vs 233 000 [229 000-238 000] under the 12-week strategy) and 10 100 deaths (64 800 deaths [60 200-68 900] vs 54 700 [52 800-55 600]). Similarly, we estimated that the 3-week strategy would have resulted in more infections compared with the 12-week strategy. Across all sensitivity analyses the 3-week strategy resulted in a greater number of hospital admissions. In results by age group, the 12-week strategy led to more hospitalisations and deaths in older people in spring 2021, but fewer following the emergence of the delta variant during summer 2021. INTERPRETATION: England's delayed-second-dose vaccination strategy was informed by early real-world data on vaccine effectiveness in the context of limited vaccine supplies in a growing epidemic. Our study shows that rapidly providing partial (single-dose) vaccine-induced protection to a larger proportion of the population was successful in reducing the burden of COVID-19 hospitalisations and deaths overall. FUNDING: UK National Institute for Health Research; UK Medical Research Council; Community Jameel; Wellcome Trust; UK Foreign, Commonwealth and Development Office; Australian National Health and Medical Research Council; and EU.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Idoso , Lactente , Teorema de Bayes , Estudos Soroepidemiológicos , Austrália , SARS-CoV-2 , Inglaterra
17.
Epidemics ; 42: 100666, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36689876

RESUMO

Reliable estimates of human mobility are important for understanding the spatial spread of infectious diseases and the effective targeting of control measures. However, when modelling infectious disease dynamics, data on human mobility at an appropriate temporal or spatial resolution are not always available, leading to the common use of model-derived mobility proxies. In this study we reviewed the different data sources and mobility models that have been used to characterise human movement in Africa. We then conducted a simulation study to better understand the implications of using human mobility proxies when predicting the spatial spread and dynamics of infectious diseases. We found major gaps in the availability of empirical measures of human mobility in Africa, leading to mobility proxies being used in place of data. Empirical data on subnational mobility were only available for 17/54 countries, and in most instances, these data characterised long-term movement patterns, which were unsuitable for modelling the spread of pathogens with short generation times (time between infection of a case and their infector). Results from our simulation study demonstrated that using mobility proxies can have a substantial impact on the predicted epidemic dynamics, with complex and non-intuitive biases. In particular, the predicted times and order of epidemic invasion, and the time of epidemic peak in different locations can be underestimated or overestimated, depending on the types of proxies used and the country of interest. Our work underscores the need for regularly updated empirical measures of population movement within and between countries to aid the prevention and control of infectious disease outbreaks. At the same time, there is a need to establish an evidence base to help understand which types of mobility data are most appropriate for describing the spread of emerging infectious diseases in different settings.


Assuntos
Doenças Transmissíveis , Epidemias , Humanos , Simulação por Computador , Surtos de Doenças , África , Doenças Transmissíveis/epidemiologia
18.
Wellcome Open Res ; 8: 416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38618198

RESUMO

Background: In the past, two studies found ensembles of human judgement forecasts of COVID-19 to show predictive performance comparable to ensembles of computational models, at least when predicting case incidences. We present a follow-up to a study conducted in Germany and Poland and investigate a novel joint approach to combine human judgement and epidemiological modelling. Methods: From May 24th to August 16th 2021, we elicited weekly one to four week ahead forecasts of cases and deaths from COVID-19 in the UK from a crowd of human forecasters. A median ensemble of all forecasts was submitted to the European Forecast Hub. Participants could use two distinct interfaces: in one, forecasters submitted a predictive distribution directly, in the other forecasters instead submitted a forecast of the effective reproduction number R t. This was then used to forecast cases and deaths using simulation methods from the EpiNow2 R package. Forecasts were scored using the weighted interval score on the original forecasts, as well as after applying the natural logarithm to both forecasts and observations. Results: The ensemble of human forecasters overall performed comparably to the official European Forecast Hub ensemble on both cases and deaths, although results were sensitive to changes in details of the evaluation. R t forecasts performed comparably to direct forecasts on cases, but worse on deaths. Self-identified "experts" tended to be better calibrated than "non-experts" for cases, but not for deaths. Conclusions: Human judgement forecasts and computational models can produce forecasts of similar quality for infectious disease such as COVID-19. The results of forecast evaluations can change depending on what metrics are chosen and judgement on what does or doesn't constitute a "good" forecast is dependent on the forecast consumer. Combinations of human and computational forecasts hold potential but present real-world challenges that need to be solved.

19.
Lancet HIV ; 9(11): e771-e780, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36332654

RESUMO

BACKGROUND: The long-term impact of universal home-based testing and treatment as part of universal testing and treatment (UTT) on HIV incidence is unknown. We made projections using a detailed individual-based model of the effect of the intervention delivered in the HPTN 071 (PopART) cluster-randomised trial. METHODS: In this modelling study, we fitted an individual-based model to the HIV epidemic and HIV care cascade in 21 high prevalence communities in Zambia and South Africa that were part of the PopART cluster-randomised trial (intervention period Nov 1, 2013, to Dec 31, 2017). The model represents coverage of home-based testing and counselling by age and sex, delivered as part of the trial, antiretroviral therapy (ART) uptake, and any changes in national guidelines on ART eligibility. In PopART, communities were randomly assigned to one of three arms: arm A received the full PopART intervention for all individuals who tested positive for HIV, arm B received the intervention with ART provided in accordance with national guidelines, and arm C received standard of care. We fitted the model to trial data twice using Approximate Bayesian Computation, once before data unblinding and then again after data unblinding. We compared projections of intervention impact with observed effects, and for four different scenarios of UTT up to Jan 1, 2030 in the study communities. FINDINGS: Compared with standard of care, a 51% (95% credible interval 40-60) reduction in HIV incidence is projected if the trial intervention (arms A and B combined) is continued from 2020 to 2030, over and above a declining trend in HIV incidence under standard of care. INTERPRETATION: A widespread and continued commitment to UTT via home-based testing and counselling can have a substantial effect on HIV incidence in high prevalence communities. FUNDING: National Institute of Allergy and Infectious Diseases, US President's Emergency Plan for AIDS Relief, International Initiative for Impact Evaluation, Bill & Melinda Gates Foundation, National Institute on Drug Abuse, and National Institute of Mental Health.


Assuntos
Epidemias , Infecções por HIV , Humanos , Teorema de Bayes , Epidemias/prevenção & controle , Infecções por HIV/diagnóstico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , África do Sul/epidemiologia , Zâmbia/epidemiologia
20.
Epidemics ; 41: 100637, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36219929

RESUMO

Contact tracing, where exposed individuals are followed up to break ongoing transmission chains, is a key pillar of outbreak response for infectious disease outbreaks. Unfortunately, these systems are not fully effective, and infections can still go undetected as people may not remember all their contacts or contacts may not be traced successfully. A large proportion of undetected infections suggests poor contact tracing and surveillance systems, which could be a potential area of improvement for a disease response. In this paper, we present a method for estimating the proportion of infections that are not detected during an outbreak. Our method uses next generation matrices that are parameterized by linked contact tracing data and case line-lists. We validate the method using simulated data from an individual-based model and then investigate two case studies: the proportion of undetected infections in the SARS-CoV-2 outbreak in New Zealand during 2020 and the Ebola epidemic in Guinea during 2014. We estimate that only 5.26% of SARS-CoV-2 infections were not detected in New Zealand during 2020 (95% credible interval: 0.243 - 16.0%) if 80% of contacts were under active surveillance but depending on assumptions about the ratio of contacts not under active surveillance versus contacts under active surveillance 39.0% or 37.7% of Ebola infections were not detected in Guinea (95% credible intervals: 1.69 - 87.0% or 1.70 - 80.9%).


Assuntos
COVID-19 , Doença pelo Vírus Ebola , Humanos , SARS-CoV-2 , COVID-19/epidemiologia , Surtos de Doenças , Busca de Comunicante/métodos , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...